第846节(2 / 2)

加入书签

凡是已经划定好的任务,他绝不会交给别人去做。

这个习惯周绍平保持了整整40年,没想到在今天他居然……

破例了?

是因为体力不支?

杨老扫了眼周绍平,心中轻轻摇了摇头。

不太像。

虽然周绍平看起来确实有点疲惫,但无论是脸色还是计算效率,都远远没有到‘撑不下去’这种程度。

而既然不是体力原因,那么答案就只有一个了——

周绍平遇到了可以真正信赖的后辈,这股信心之强,硬生生盖过了心中的那道梦魇。

想到这里。

杨老又悄悄看了眼身边的徐云,脸上的表情有些微妙。

周绍平、章公定、侯星远、王老……哦,还有杨老本人。

不知不觉中。

这个年轻人已经与如此多老一辈院士有过接触,并且得到了他们的承认与帮助,被一位又一位老院士载予厚望。

纵观整个华夏科学界的年轻一代,徐云是唯一一人。

不过很有意思的是……

他本人似乎并没意识到这一点?

……

其实如果徐云能追更到这一章的话,他或许能透过文字内容了解到杨老心中所想。

但遗憾的是,他并没有这个能力。

所以此时他的心思压根就没去考虑什么期待或者信任,而是一心投放到了数据的计算上。

毕竟这是最后的boss了。

有着狄利克雷的加持,徐云的脑海显得一片清明。

唰唰唰——

大量的公式随着笔尖的移动,一个接一个的出现在了算纸上。

模量平方算符中同时含有位置算符与动量算符,二者存在一种很精确的对易关系。

如果是通过现象测得的微粒,推导起来其实是很容易的,套模板就行了。

但问题是‘冥王星’粒子并没有被捕捉过,所以推导过程就非常麻烦了。

而徐云这次准备的切入点是……

庞加莱群。

因为庞加莱群有个很特殊的地方:

它的表示可以完全由其迷向子群及诱导表示决定。

借助poincare群万有覆盖的小群在自旋空间上的表示,即可得到该万有覆盖在希尔伯特空间上的不可约幺正表示,即诱导表示。

不同的迷向子群给出不同的诱导表示,对应不同的单粒子态。

即粒子的不可约幺正表示,是完全由时空的基本对称性决定了的,不会有其他因素干扰。

嗯,上面这段话是标准的汉字和人话。

过了片刻。

徐云在密级的计算内容下方,写下了算符l^z本征值为m的本征态:

l^+ψm=cψm+1……

同时[l^z,l^+]=l^+可得l^zl^+=l^++l^+l^z=l^+(1+l^z),所以可见l^+相当于一个生成算符,l^-相当于一个湮灭算符。

它们使得l^z的本征值总是依次递增或递减整数1,当角动量的模量平方取定且l^z的最大本征值为m=l-1时,则必有l^+ψl=0。

看到这里。

可能有部分众所周同学就感觉有些奇怪了:

为什么最大本征值是m=l-1呢,不应该是等于l吗?

原因很简单。

因为当角动量的模量平方取定且l为m的量最大允许值时,本征值为l+1的态是不存在的。

由于系统总可以处于轨道角动量为0的状态,所以0必是分量算符l^z的一个本征值。

而由l^+与l^-的行为可知,对于角动量分量算符l^z,它的相邻本征值之间总是相差一个整数1。

所以分量算符l^z的本征值只能为m=0,±1,±2,……±l-1。

↑返回顶部↑

书页/目录